Available courses


Here's a revised course design in English, with a focus on conceptual flow and process guidance (excluding technical commands):

---

### **Course Title**  
**Local AI Development Environment Setup & Implementation**  
*AI Toolkit Integration with Ollama & Open WebUI*

---

### **Learning Objectives**  
1. Master local AI environment setup on Mac Studio or dual RTX 3090 workstations  
2. Deploy Ollama and Open WebUI for model interaction  
3. Implement OpenAI-compatible API integration  
4. Configure VS Code for local LLM-based code generation  

---

### **Course Duration**  
**2 Weeks (10 Class Hours)**

---

### **Curriculum Outline**  

#### **Module 1: Local AI Environment Setup (2 Days)**  
- **Hardware Requirements**  
  - Mac Studio: macOS 10.14+, 64G RAM, 1TB SSD [2]  
  - Dual RTX 3090: NVIDIA GPU drivers with CUDA support  
- **Software Foundation**  
  - Install essential development tools (Xcode, Docker)  
  - Configure GPU acceleration for AI workloads  
- **Security Considerations**  
  - Local-only processing for codebase privacy [1]  

---

#### **Module 2: Ollama Deployment (1 Day)**  
- **Model Hosting**  
  - Containerized deployment via Docker  
  - GPU optimization for inference performance  
- **Model Lifecycle Management**  
  - Model pulling, running, and monitoring  
  - Resource allocation for multi-model environments  

---

#### **Module 3: Open WebUI Integration (1 Day)**  
- **Web Interface Deployment**  
  - GPU-enabled Docker configuration for interactive model access [1]  
  - CPU fallback mode for compatibility scenarios [1]  
- **User Interface Customization**  
  - Dashboard configuration for model selection and parameter tuning  

---

#### **Module 4: OpenAI API Compatibility (1 Day)**  
- **API Gateway Implementation**  
  - FastAPI-based wrapper for Ollama endpoints  
  - RESTful API design for third-party integration  
- **Security & Authentication**  
  - Local API key management  
  - Rate limiting and request validation  

---

#### **Module 5: VS Code Integration (1 Day)**  
- **IDE Configuration**  
  - Local LLM plugin installation (e.g., Roo Code)  
  - API endpoint configuration for code generation  
- **Workflow Optimization**  
  - Context-aware code suggestions  
  - Error detection and real-time feedback  

---

### **Delivery Format**  
1. **Documentation**  
   - Markdown-based technical guides  
   - YouTube video tutorials  
2. **Hands-on Projects**  
   - End-to-end environment setup tasks  
   - Code generation challenge exercises  

---

### **Key Features**  
- Cost-effective local AI development [1]  
- No cloud dependency for data privacy [1]  
- Free open-source toolchain [2]  

---

### **References**  
- [1] Open WebUI and Ollama deployment architecture  
- [2] Mac Studio AI development environment configuration  

This design maintains technical depth while focusing on conceptual understanding, with citations included where context sources explicitly reference implementation details.